Archive for the ‘Optimizing Applications’ Category

New Custom UCMR4 Standard for EPA Method 530 on the Rxi-5Sil MS

We recently stocked custom EPA Method 530 standards made specifically for labs participating in Unregulated Contaminant Monitoring Rule 4 (UCMR4). Quantitative Certificates of Analysis with Data Packs are available for each item. Email csreps@restek.com or phone 800-356-1688 ext. 3 to place your order (items are not available at Restek.com). EPA Method 530, the Determination of Select Semivolatile […]

EPA Method 541 on the Stabilwax Column

I recently posted some chromatograms for our new EPA Method 541 UCMR4 Standards, and wanted to focus on the column in a separate post. EPA Method 541 was developed on a 30m x 0.25 mm ID x 0.50 µm wax column from another manufacturer. I used the Stabilwax because it is a relatively low bleed […]

New Custom UCMR4 Standards for EPA Method 541

We recently stocked custom EPA Method 541 standards made specifically for labs participating in Unregulated Contaminant Monitoring Rule 4 (UCMR4). Quantitative Certificates of Analysis with Data Packs are available for each item. Email csreps@restek.com or phone 800-356-1688 ext. 3 to place your order (items are not available at Restek.com).   Cat# 572263 – Method 541 UCMR4 Standard […]

New Custom UCMR4 Standard for EPA Method 530 on the Rtx-1701

We recently stocked custom EPA Method 530 standards made specifically for labs participating in Unregulated Contaminant Monitoring Rule 4 (UCMR4). Quantitative Certificates of Analysis with Data Packs are available for each item. Email csreps@restek.com or phone 800-356-1688 ext. 3 to place your order (items are not available at Restek.com). Cat# 572262 – Method 530 UCMR4 Standard (in […]

New Custom UCMR4 Standard for EPA Method 525.3

We recently stocked a custom EPA Method 525.3 standard made specifically for labs participating in Unregulated Contaminant Monitoring Rule 4 (UCMR4). Quantitative Certificates of Analysis with Data Packs are available for each item. Email csreps@restek.com or phone 800-356-1688 ext. 3 to place your order (items are not available at Restek.com) Cat# 572261 – Method 525.3 UCMR4 […]

Can HPLC-UV Be Used For Terpenes Analysis In Cannabis?

While HPLC may be tempting to use for terpenes analysis, a GC/FID or GC/MS is really the most straightforward and recommended way of analyzing terpenes in cannabis. Terpenes, being relatively volatile and neutral, lend themselves rather nicely to GC in general. As you can see from Figure 1 below, coelutions of the cannabinoids and terpenes are very likely when […]

What is the pressure limit for my LC column?

This is a question we get in Tech Services fairly often.  Unfortunately, we are not able to provide a published limit for every column that we produce, but here are a few of them that we have specified: For 3 and 5 um fully porous particle ROC LC columns, the maximum operating pressure is 400 […]

Quadrupole Scan Speed and the 8270 Instrument Checkout Mix

In my last blog (here), I promised an update on the impact of the detector scan speed on the tailing factor. I had speculated that a pentachlorophenol tailing factor value of 0.94 was more likely < 1.0 because of the scan rate, rather than column overload. The examples I put forward here were collected on […]

Cannabis Residual Solvents Using MS Detection – I’m Not Hungry but I’ll Eat My Words Anyway

After coming back from a huge lunch at the Bellefonte Wok, a favorite Restek lunch spot, I’m completely stuffed, but I have to eat my words from a previous blog. In this blog, I made the case against using MS detection for headspace analysis of residual solvents in cannabis concentrates due to interference between the […]

An introduction to the benefits of using split injection when performing semivolatiles analysis by 8270D – the instrument checkout mix

This blog is part of a series; the previous installments can be found here and here. We have mentioned several times that the reduced residence time resulting from the fast sample transfer that occurs during a split injection reduces in-inlet degradation and adsorptive loss. Proof of this can be seen in the first run of […]