Archive for the ‘Cannabis’ Category

Cannabis Concentrates Part II: We’re Heading to Space!

Welcome back! It’s been a little while since my last blog, but in that time, we’ve been doing some interesting things regarding cannabis research. Last time, I discussed that we would be analyzing residual solvents in cannabis concentrates and today, I’m going to show one of the methods that we’ve been working on. If you […]

Cannabis Concentrates Part I: Introduction to Residual Solvents

Greetings, everyone! My name is Colton Myers and I’m the new kid on the block at Restek…kinda. You may have seen my name before in Jason Herrington’s E-Cig blogs, but that’s from when I was an intern at Restek. Now, I have the opportunity to work in our Innovations lab at Restek and do some […]

Can HPLC-UV Be Used For Terpenes Analysis In Cannabis?

While HPLC may be tempting to use for terpenes analysis, a GC/FID or GC/MS is really the most straightforward and recommended way of analyzing terpenes in cannabis. Terpenes, being relatively volatile and neutral, lend themselves rather nicely to GC in general. As you can see from Figure 1 below, coelutions of the cannabinoids and terpenes are very likely when […]

Cannabis Residual Solvents Using MS Detection – I’m Not Hungry but I’ll Eat My Words Anyway

After coming back from a huge lunch at the Bellefonte Wok, a favorite Restek lunch spot, I’m completely stuffed, but I have to eat my words from a previous blog. In this blog, I made the case against using MS detection for headspace analysis of residual solvents in cannabis concentrates due to interference between the […]

It May be Hot Outside, but Your Headspace Analysis Can Still Suffer from the Cold

Summer days are my favorite – hot, sunny, and full of fun. But one thing that’s really not fun is trying to track down contamination and/or carryover in your headspace-GC (HS-GC) system. I get questions about this topic pretty regularly, so I thought I would post a blog on the most common culprit for contamination […]

Extraction Method for Cannabinoid Analysis in Edibles: Too Much of a Good Thing

After a long blog hiatus, I’d like to address one of the most frequently-asked questions we get from cannabis labs: “how do we quantitatively extract cannabinoids from edible matrices?”. With the huge number of matrices out there, limited peer-reviewed data, and lack of sufficiently concentrated reference standards for spiking, it’s no wonder that after several […]

Pesticide analysis for cannabis flower: method and data overview

Pesticides in cannabis has been a hot topic lately and we have been getting many requests for help with this analysis. We did work on pesticide residue testing in cannabis about 6 years ago. At that time, we were limited to testing our methods with a small amount of seized material. Recently, we have been […]

Accurate Quantification of Cannabinoid Acids and Neutrals by GC – Derivatives without Calculus

Derivatization is a widely-used technique for GC sample preparation across many industries and in widely varied matrices from soil to plastics to blood that is used to make polar and active compounds more amenable to good GC analysis. If you’re careful about testing your derivatization procedure during method development, you can be confident that you’ll […]

Accurate Quantification of Cannabinoid Acids by GC – Is it Possible?

I think by now we’ve all heard that GC potency testing for cannabis or hemp has some drawbacks. That being said, GC is a popular, rugged, and cost-effective laboratory workhorse and is still employed in many cannabis laboratories. The major drawback of GC versus HPLC cannabinoid testing is the fact that the acidic cannabinoids convert […]

Terpenes in Cannabis – to MS or not to MS?

In my last blog, I showed how FID is a more suitable detection method for cannabis residual solvent analysis than MS. But what about terpene analysis? Can our old friend the FID hold its ground against the mighty mass spectrometer for this application? Actually, it can! Terpenes are much larger molecules than residual solvents, so […]