Metabolomics in agricultural research

Expanded applications and database capabilities for volatile compound capture and tracking

Kirsten Skogerson, Ph.D.
Analytical Biochemist, Monsanto
Outline

• Background
• Vineyard study design
• Sampling & detection methods
• Database construction
• Vineyard study results
Volatile Organic Compounds (VOCs)

- Small (C5-C20)
- Low boiling points & high vapor pressures

- Importance
 - Chemical ecology
 - Flavor / fragrance
 - Food authentication
 - Medical testing
Plant VOCs are complex mixtures

Protection against:
- Abiotic stress (thermotolerance and photoprotection)
- Herbivores
- Pathogens
- Competitors

Attraction of:
- Pollinators
- Mutualistic microbes
- Seed dispersers
- Predators/parasitoids

- Herbivores
- Parasitoids
- Pathogens

Within-plant signaling

Allelopathy

Between-plant signaling
Field applications for volatile biomarkers

- Real-time measures
- Early stress & disease detection
- Maturity & quality assessments
- Improved resource allocation

Small-scale studies: blueberry maturity, citrus canker disease detection, walnut tree drought stress, tomato plant damage
Traditional plant VOC trapping & detection

- Sampling systems require plant enclosure, pumps, plumbed gases & electricity
- Small sample sizes
- GC-MS detection
- ~20-80 compounds reported (identified)
Field study challenges

- Large sample numbers required
- GC-MS datasets complex (hundreds vs. dozens of peaks)
- Publically available VOC compound databases not available in searchable formats

BETTER SAMPLING, ANNOTATION, & DATABASE TOOLS NEEDED
Vineyard Volatiles: Cabernet Sauvignon fruit maturity

Dominus Estate – Christian Moueix, Tod Mostero, Jean-Marie Maureze, Michelle Beyer
Grape maturity

- Wine quality
- Viticultural practices
- Resource allocation during harvest

- Destructive measures are time/labor intensive
 - Physical – mass, deformability
 - Chemical – sugar, acids, phenolics
 - Sensory – color, aroma, flavor
Vine VOC Project

VOC profiling (GC-MS)

Standard grape maturity indices

TRAIN E-NOSE TO DETECT BIOMARKERS

Maturity Biomarkers
Study Design

- 3 Cabernet Sauvignon blocks
 - 6 vines per block & background air controls
- VOCs sampled daily for 12 weeks
- Grape maturity indices final 8 weeks

~1200 VOC samples (2008 season)
Volatile compound capture

Twister® Stir Bar

Glass
Magnet
PDMS

GERSTEL, Inc.

Solid Phase Micro Extraction
SPME Fiber

Twister® capacity **100-1000 fold greater** than polydimethylsiloxane (PDMS)-coated SPME fiber

Methods
Twister® Flexibility

Active / passive
Lab, greenhouse, field
(Intact fruit)
Easy to deploy off-site

Insert Twister
directly into flesh

Field sampler sent to collaborator

Greenhouse (bag enclosure)

HSSE

In-field Twister
VOC sampling solution – 24h passive sampling

Twister®
Thermal Desorption Unit

Methods

Inlet

Heated zone

Cryo-cooled zone

external markers loaded into capillary tube

Twister®

TDU graphics courtesy of GERSTEL, Inc.
Retention Index Markers

- Absolute RT shifts as function of column length, age & sample type (or injector errors)

- Fatty acid methyl ester (FAME) RI markers required for data auto-annotation (C4-C24)
VOC Analysis (GC-TOF-MS)

Methods

- Leco Pegasus IV / ChromaTOF software
- 35 min cycle time
Vineyard VOC Project – representative data
Challenges

• Hundreds, thousands of samples
• Complex chromatograms
• Manual annotation tedious, error-prone
• Databases of VOC compounds static and not easily searchable
• Unidentified peak information easily lost
Data annotation options

Agilent Technologies

Mass Profiler Professional Software

Waters

MetaboLynx XS
MarkerLynx

Leco

ChromaTOF

SPECTCONNECT

Systematic Identification of Conserved Metabolites in GC/MS Data for Metabolomics Discovery

Mark P. Styczynski, Joel F. Moxley, Lily V. Tong, Jason L. Walther, Kyle L. Jensen, and Gregory N. Stephanopoulos

Department of Chemical Engineering, Massachusetts Institute of Technology, Room 8-489c, Cambridge, Massachusetts 02139

BIOINFORMATICS APPLICATIONS NOTE

Data and text mining

MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data

Mikko Katajamaa¹, Jarkko Miettinen² and Matej Orešič²,*

¹Turku Centre for Biotechnology, Turku, Finland and VTT Technical Research Centre of Finland, Espoo, Finland

TagFinder

Data and text mining

TagFinder for the quantitative analysis of gas chromatography - mass spectrometry (GC-MS) based metabolite profiling experiments

Alexander Luedemann, Katrin Strassburg, Alexander Erban and Joachim Kopka*

Max Planck Institute of Molecular Plant Physiology, Department Prof. L. Willmitzer, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany.
Metabolite Database
http://binbase.sourceforge.net

• Only annotation software with databasing capabilities
 – Track & store unique molecules (dynamic system)
 – Comprehensive data annotations for all studies

• Assignments supported by Fiehn Metabolite Library (1000+ metabolites)

• BinBase framework adaptable for VOCs

Gert Wohlgemuth – BinBase Programmer
BinBase Algorithm

- RT → RI calculation
- Multi-tiered filtering system
 - RI
 - Unique ion
 - MS similarity
 - Peak purity
 - S/N
- New Bin generation possible with class filter
Database

Total ion intensity

Time (s)

300 500 700 900

Peak #122

Select ion intensity

Time (s)

400 404 408 412

deconvoluted MS of peak #122

RI = 446700
unique ion = 93
signal/noise = 2013
purity = 0.1137
apex masses = 98+31+39+...

1500 Bin database

RI Filter

8 possible matches

Unique ion filter

2 possible matches

Linalool
MS match 917

Terpinolene
MS match <500
BinBase Reports

<table>
<thead>
<tr>
<th>compound name</th>
<th>retention index</th>
<th>PubChem CID</th>
<th>user provided data</th>
</tr>
</thead>
<tbody>
<tr>
<td>hexanol (2z)</td>
<td>390009 43</td>
<td>47178 36:68.0</td>
<td></td>
</tr>
<tr>
<td>heptanol (2-)</td>
<td>346144 45</td>
<td>45431 33:208.0 37</td>
<td>10976</td>
</tr>
<tr>
<td>linalool oxide (dehydr)</td>
<td>394631 68</td>
<td>47418 31:440.0 37</td>
<td>-</td>
</tr>
<tr>
<td>hepten-2-one (6-meth)</td>
<td>39009 39009</td>
<td>43718 36:68.0</td>
<td>-</td>
</tr>
<tr>
<td>octanone (2-)</td>
<td>392202 58</td>
<td>45340 36:2.0</td>
<td>-</td>
</tr>
<tr>
<td>pentyl furan (2-)</td>
<td>393793 81</td>
<td>45700 30:250.0</td>
<td>-</td>
</tr>
<tr>
<td>linalool oxide (dehyd)</td>
<td>394631 68</td>
<td>47418 31:440.0 37</td>
<td>-</td>
</tr>
<tr>
<td>hexyl acetate (3e)</td>
<td>398624 67</td>
<td>45926 32:6219.0 3 -</td>
<td>-</td>
</tr>
<tr>
<td>50987</td>
<td>400269 41</td>
<td>50987 35:308.0 31 -</td>
<td>-</td>
</tr>
</tbody>
</table>

Note:
- **VOC BinBase Name:** hexanol (2z), heptanol (2-), linalool oxide (dehyd), hepten-2-one (6-meth), octanone (2-), pentyl furan (2-), linalool oxide (dehydr), hexyl acetate (3e), 50987
- **SetupX Class ID:** VOC BB ID, mass spec, PubChem ID
- **Sample Prep:** sample prep, harvest timepoint, vineyard
- **Grape Variety Code:** Pinot grigio
- **Code:** PDA PDA PDA PDA PDA PDA PDB
- **PubChem CID:** CID 5283321, CID 8908, CID 19602, CID 8093, CID 9862, CID 18827, CID 637564, CID 10976
- **Mass Spec:** mass spec
- **First-Pass Annotation:** 'first-pass' annotation
- **Unique Bin ID:** unique Bin id
- **Ion Used for Quantification:** ion used for quantification
- **Replacement Values:** replaced values
BinBase ‘replaced’ values

- Absent peaks or those not passing thresholds yield zeros in results tables

- Raw data access allows for zero replacements

- Quality of replaced values is high
Compound Identification

- Purchased Robert Adams plant compound library
- Convert Adams RI to Fiehn FAME RI equivalent
- Test conversion by injecting pure standards
- 2200 compounds instantly searchable (both MS & RI data)
VOC BinBase Database Contents

- 1.6 million spectra from 3200 samples, but only ~1500 Bins present in the database

- Spectral similarity network + chemical similarity links (blue) for identified compounds (red nodes)

Dinesh Barupal (Fiehn Lab)

Vineyard Volatiles:
Cabernet Sauvignon fruit maturity

Dominus Estate – Christian Mouiex,
Tod Mostero, Jean-Marie Maureze, Michelle Beyer
Study objectives

• Evaluate Twister®-based sampling for large-scale field studies

• Test new VOC BinBase annotation and database tool

• Determine whether changes in vine canopy VOCs correlate with traditional maturity indices
2008-09 Study Design

~ 9-10 dates with winery maturity measures for each block

6 dates with winery maturity measures
Twister® detection
(Applaud pesticide)

Daily averages by block

- Block A
- Block B
- Block C
- Control

Block B
(all 2008 data)

Block B
(detail)
BinBase Annotation

- 2000 samples (2008-09)
- 900 Bins annotated – 171 identified
Principal Component Analysis (900 VOCs)

Unsupervised method shows data structure
Compound trends (terpene/norisoprenoid)

Vine VOC Project

Categ. Box & Whisker Plot: linalool

Box (Standard error) / Whiskers (1.96 x SE)
Compound trends (benzenoid/phenylpropanoid)

Vine VOC Project

Box (Standard error) / Whiskers (1.96 x SE)
Compound trends (esters/acids)

Vine VOC Project

Box (Standard error) / Whiskers (1.96 x SE)
Modeling work – Statistica

- Feature selection used to chose 20 Bin lists
- Modeled Sugar (Brix) & Sugar/TA ratios
- 2008 models and dual-year models constructed
- Backward variable selection for PLS (BVSPLS)
- Simultaneous modeling of multiple indices
Partial least squares regression analysis:
Sugar/TA ratio model (2008 data)

- Sugar/TA ratio ~linear
- Model constructed from 29 VOC profiles on days winery measure also taken
- Model tested with 82 VOC profiles collected on days where winery data not available
- Use interpolated values to assess quality of model predictions

- Prediction error acceptable (<10 Sugar/TA ratio units)
- Prediction error ~15 Sugar/TA units for 2009 samples!!
- Air control samples collected on property (50 m from vines) were not able to predict Sugar/TA values
Dual-year Sugar/TA Model Performance

- Model constructed from 2008 & 2009 winery data
- Model prediction errors similar to 2008 model
- Model predictions improved for 2009 VOC data
- (BVSP1LS best model with RMSEP = 7.87)
Summary

• Unique, large-scale study of plant VOCs to identify biomarkers for agricultural applications

• Twister® employed successfully as passive sampler

• Metabolite BinBase extended to complex volatile mixture analysis & Adams library integrated to speed compound identification

• Feasibility of an in-field grape maturity monitoring system demonstrated

Sampling / data analysis approaches developed should make large-scale field studies accessible
How close are we.....?

Conclusions

- Preliminary results from vineyard project are interesting.
- Project requires additional years data collection (multiple sites, varieties, vintages).
- Future efforts must focus on compound identification.
- Electronic-nose testing could begin with the identified compounds found in this study.
VOC BinBase Download

- .msp file format for uploading into vendor software
- Mass spectra provided with both Fiehn FAME RI & Kovats alkane RI values
- 220 identified, ~1000 unidentified (no artifacts)
Acknowledgements

- Oliver Fiehn
- **Fiehn Lab Members** (Gert Wohlgemuth, BinBase programmer)
- Sue Ebeler
- Florence Negre-Zakharov
- Roger Boulton
- John Yoder
- Dominus Team
 - Christian Moueix
 - Tod Mostero
 - Michelle Beyer
 - Jean-Marie Maureze

Funding

- Crosby Fellowship
- Dominus
- Bioinformatics Summer Grant
- Citrus Research Board
Questions
2009 VOC trends

Week 37
(23.2 Brix)
- ethyl decanoate
- ethyl octanoate
- nonanoic acid
- octanoic acid
- hexenyl isobutanoate (3z–)
- geranyl acetate
- linalyl acetate
- camphene
- acetonyl acetone

Week 38
(24.0 Brix)
- linalool oxides
- octadecanoic acid
- dodecanoic acid
- 4-hydroxy-4-methyl-2-pentanone

Week 39
(24.9 Brix)
- hexenyl butanoate (3z–)
- 6, 9-guaidiene
- α-thujene
- thujone
- ortho-cymene
- octanol (3–)

Week 40
(26.1 Brix)
- methyl biphenyl
- 1,8-cineole
- iso-menthone
- 2-octanone
- 2-heptanone

Dinesh Barupal (Fiehn Lab)
VOC BinBase: Compound ID & Tracking

- FAME RI markers added to each sample for auto-annotation & compound databasing
- MS-RI based compound assignments
 - Adams library 2000+
 - Std injections (coated capillaries)
- Current database stats:
 - 3600 samples (18 species)
 - 1.3 million spectra
 - 1500 unique spectra

Ability to track & catalog unknowns critical in area of complex volatile mixture analysis
Wine Grape Example: 2 varieties, 2 vineyards, 4 harvest dates

- Grape must (SBSE)
- 122 grape-related compounds
- PCA scores plots:
 - Site drives separation on PC1
 - Variety drives separation on PC3
- PCA loadings:
 - Pesticides are key in site differentiation
 - Terpenes key in varietal differentiation